phillips kiln logo

phillips  kiln header

How to repair tire and roller wear


A resurfacing technique restores the worn surfaces of cement kiln tires and support rollers.

With any hot kiln alignment technique, one concern determines the overall effectiveness of the alignment process: Wear on the surfaces of the tires and support rollers makes it difficult, if not impossible, to make support roller adjustments to achieve proper alignment.

An ideal hot kiln alignment involves not only the horizontal and vertical axes of the shell, but the balance of the axial thrust of the kiln as well. When tires and support rollers are worn on the contact surfaces, making roller adjustments and training for axial thrust become delicate procedures. In some cases, moves to correct the alignment cannot be made effectively. Fortunately, excessive wear of tires and support rollers can be eliminated during the process of resurfacing.

The tire and support roller resurfacing process has existed for more than 20 years and has been offered by many companies with varying degrees of success.

This article will explain the resurfacing process and describe how it can improve mechanical stability while increasing the cost efficiency of kiln operation.

How wear develops

The first step in understanding how wear develops on the surfaces of tires and support rollers is to investigate the principles of adjusting support rollers to control the axial thrust of the kiln.

Figure 1 illustrates a section of a typical, cement kiln. In this diagram, all the support rollers are pictured in the neutral position with the roller shafts parallel to the axis of rotation of the kiln shell. Since a kiln is usually installed at a slope of 1/2 in./ft, the natural inclination of the kiln is to run hard against the downhill thrust roller mechanism. Consequently, to keep the kiln from continuously riding hard on the downhill-thrust roller, it is necessary to skew the rollers proportionally to move the kiln toward the uphill-thrust roller (see Figure 2). Skewing adjustments should be made in small increments of approximately .010 in. bearing housing.


Figure 1


Figure 2

Two theories exist about training the axial thrust of the kiln. One is to have the kiln on the uphill-thrust roller for a portion of the revolution. The opposing strategy is to have the kiln on the downhill-thrust roller for approximately 30% of the kiln revolution. The latter method is preferable because it requires fewer support roller adjustments to obtain the desired amount of thrust. Further more, the downhill-thrust roller acts as an additional mechanism to push the kiln uphill. The amount of adjustment needed to train the axial thrust of the kiln can be minimized. Minimizing the amount of support-roller adjustments is beneficial because it will reduce the wear rate caused by roller-shaft skewing.


Figure 3


Figure 4


Figure 5A, 5B

Fig. 3 Normal adjustment of support rollers, causing convex wear on tire and concave wear on rollers.

Fig. 4 Convex wear and concave wear on support roller as a result of normal adjustments.

Fig. 5A
The kiln thrust is uphill hard, pushing the shell through until it contacts the stop blocks. The continued travel of the kiln will take the tire with it and force the tire against the uphill edge of the roller. If the thrust of the kiln is excessive, the uphill roller shaft can shift and cause hot bearing temperatures.

Fig. 5B
The kiln thrust is hard downhill, pushing the shell through the tire to contact with the uphill stop blocks. Further downhill travel of the kiln will cause the tire to move the roller shaft downhill. Since most rollers are adjusted so the shaft is in a downhill position, the downhill thrust plate or collar will have high loading, and high bearing temperatures will result.

Concave and convex wear

Figure 3-The relationship between the surfaces of the support rollers and the face of the tire when the roller shafts are skewed to control the axial thrust of the kiln. Note that the axis of the roller shaft is no longer parallel to the axis of the tire. Consequently, the edges of the tire on both sides of the face will have higher load concentrations than at the center of the tire.

After the kiln operates in this condition for some time, the tire will have accelerated wear on its edges, giving it a convex shape. Since the support rollers are wider than the tire, the surface of the rollers will develop concave wear (see Figure 4). Since this is the desired adjustment position of the rollers to control the axial thrust of the kiln, this kiln design makes concave and convex wear inevitable.

The wear of the tires and support rollers will continue to require more support roller adjustments through the years to compensate for material lost during the wearing process. Increasing the amount of roller shaft skew in order to compensate for wear actually will accelerate wear on the tire and support rollers, as well as present the following mechanical complications:

  • As concave and convex wear continues, the contact surface on the tire and support rollers will decrease. As a result, incremental moves on the bearing housings will increase proportionally to maintain the desired thrust of the kiln against the thrust rollers. For example, if a tire surface is 24 in. wide and the concave and convex wear decreases the contact surface by 2 in. on each edge, it is necessary to move the bearing housing .013 in. to achieve the results of a .010 in. move on a flat surface. If the contact surfaces decrease by 30%, it is necessary to increase the bearing adjustments by 50% to achieve the same results as when there is full contact between the tire and support rollers. The adjustments required to control the axial thrust of the kiln escalate the wear, and the kiln becomes difficult to control;
  • As the kiln revolves, the contact between the tire and roller hardens a thin layer of metal on the contact surface. Since the roller turns approximately three times for every tire revolution, the roller surface becomes harder than the tire surface. The hardness relationship between the tire and roller is significant because stresses in the metal on the edges of the tires and rollers will cause cracks and surface spalling. The situation is compounded by the movement of the kiln uphill and downhill with atmospheric conditions such as temperature changes, rain, snow, or excessive dust. When the kiln moves uphill or downhill, the tire is forced against the high edges of the support rollers, intensifying the existing loads and resulting in broken edges on the tire and support rollers;
  • Another important consideration with convex and concave wear is the possibility of high bearing temperatures and subsequent bearing failures. If the surfaces of the tires and rollers wear to the point that the tire is not free to move uphill and downhill on the surface of the support roller, the tire will force the roller to move in the direction of the kiln thrust (Figures 5A & 5B). The roller shaft will be forced against the thrust collar or thrust plate and high heating temperatures will result. If plant personnel are not quick to respond and make adjustments to change the kiln thrust, the bearing will overheat and fail. This situation can become critical because the kiln will change thrust direction for a variety of reasons and plant personnel constantly will be making adjustments to stabilize it;
  • The concave and convex wear on the surfaces of the tires and support rollers will cause a drag that will increase considerably the amperage use. In evaluating the kiln's operational performance over the years, there is a tendency to disregard the amount of energy required during production. This is a mistake, because energy consumption is directly related to the efficiency of the kiln operation. Excessive wear on tire and roller surfaces will decrease the operating efficiency proportionally, thus increasing energy consumption. It is not uncommon to find kilns using 25% to 50% more amperage strictly on the basis of the tire and roller wear. Furthermore, the drag caused by the worn tires and support rollers will introduce wear in the drive system that will accelerate drive component problems.

Conical wear

Conical wear, or radial taper, of the tires and support rollers exists when the diameter of the tire or support roller is smaller on one side of the face (see Figure 6). Speculation abounds about the causes of conical wear. Several conditions are present when conical wear is detected. The main condition is that the roller shafts are adjusted so their axes of rotation are not parallel on each pier (see Figure 7). This skewing of the support roller shafts often is caused by plant personnel losing track of the adjustments made on the support rollers. If this condition is excessive, an acceleration of wear will quickly produce cone shaped tires and support rollers.

Roller shaft skewing also is used to relieve the axial thrusting of the tire against the stop blocks or retaining bands. In some cases, settling of the concrete support piers will cause the structural steel bases to deviate from the original design slope. The difference in the base slope will cause a tilting of the roller shaft in the vertical plane that will create a gap between the surface of the tire and roller. Plant personnel often close the gap by moving in the bearing housing on the side of the gap. This mistake is common when lead wire is used to adjust for contact on the surfaces of the tires and support rollers. As a result of these types of roller adjustments, conical wear will begin and will increase with time.


Figure 6


Fgure 7


Figure 8

Fig 6 Diameter A is smaller diameter on tire; Diameter B is larger diameter on tire; Diameter C is larger diameter on roller; Diameter D is smaller diameter on roller. (Note: With this condition the tire will be pushing against discharge side stop blocks.)

Fig. 7 Support rollers are adjusted so roller shafts are not parallel. Dimension A is less than Dimension B.

Fig. 8 Diameter A is smaller diameter on tire; Diameter B is larger diameter on tire. Dotted line shows the inclination of the tire to tilt towards diameter A or smaller diameter. The feed side blocks hold the tire in place, but this causes excessive wear.

Whatever the reasons for conical wear, the condition is undesirable for the same reasons outlined in the section on concave and convex wear. Furthermore, there are a few additional concerns:

  • Since the tire diameter is smaller on one side of the tire face, surface loading is not evenly distributed. Consequently, the tire's axis of rotation will tend to tilt toward the side with the greater load. However, the tire cannot tilt because the support rollers and the stop blocks are holding it perpendicular to the shell axis. Since the stop blocks are resisting this inclination of the tire to tilt its axis, a tremendous load is placed on the stop blocks. It is not unusual to see a .015 in. taper on the radius of the tire cause excessive loading of the tire against the stop blocks. This seems like a small discrepancy, but it would be similar to installing .060 in. shims under the bearing housings on each side of the tire. The high tire loading will eventually break the welds on the stop blocks and support pads. If the loading is excessive, the tire will lift the stop blocks completely off the support pad. The broken welds and damage caused by the tire loading on the stop blocks is one of the most bothersome areas of kiln maintenance during shutdowns. Newly designed floating support pads will decrease the weld cracking caused by thermal expansion, but tire loading will continue to introduce cracks and damage to these parts;
  • In the case of the tire loading on one side of the surface as a result of the conical wear, the inside diameter of the tire will create a higher loading on the out side diameter of the support pads. The ensuing frictional wear will cause the tire and the support pads to wear excessively and the gap between the tire and support pads will increase. As the gap increases, the shell will flatten at the top portion and high shell ovality will result. Shell ovality is a critical maintenance concern because of ovality's affiliation with premature brick or refractory failure. Furthermore, the gap is directly related to the creep of a tire, and the creep will increase with the gap. The wear will accelerate on the support pads, escalating the relative movement between the tire and the stop blocks as the gap fluctuates at the top of the shell. When the gap opens, the tire will lift the stop blocks, and when the gap closes, the tire will release the stop blocks, creating a fatigue-type loading on the stop-block welds;
  • A condition related to the conical wear of the surfaces of the tire and support rollers can present a problem if it is excessive. On the contact surface between the tire and support rollers, the diameters will vary in size because of the conical wear. Since the tire and roller are turning at the same speed, the induced slip, or drag, that occurs can cause high stress areas on the surfaces. Excessive slip or drag can result in stress cracking or surface spalling. At the very least, the existing drag between the contact surfaces will require additional amperage to turn the kiln during normal operation.

Tire and roller wear is often the consequence of normal kiln operation. The above-mentioned wear patterns were problems within the industry for many years without much hope of relief until the resurfacing process was developed. The means now are available to remove the wear and restore flat surfaces to the tires and support rollers. The resurfacing process can greatly assist plants experiencing wear.

The resurfacing process

One of the primary benefits of the resurfacing process is that all the work can be performed while the kiln is in normal production. Modern technology has provided the means to take all circumferential measurements of the tires and support rollers with electronic devices. The readings assimilated make it possible to hold a machining tolerance of .005 in. on the radius.

The accuracy gives the tires and rollers a like-new surface with the exception of one major point: New parts are machined in a controlled environment, but are not machined to match each other.

For example, a new tire is machined so the outside diameter (OD) and the inside diameter (ID) are concentric. However, the tire is not machined to revolve on the kiln shell's axis of rotation. The tolerance of the shell and the tire are such that a fair amount of runout will exist between the tire ID and the shell OD and some misalignment will be present when the parts are assembled in the field. For this reason, even in this new installation, the parts may wear.

The resurfacing process machines the tire as it revolves on the axis of rotation of the kiln shell, thus achieving better tire to-shell concentricity. The actual machining process can be performed in many ways: a cutting tool mounted on a fixture that traverses the tire and roller face, a belt grinder attached to a type of lathe bed, or a cup grinding stone attached to a machine similar to a centerless grinder.

Using the cutting tool arrangement has a tendency to remove too much material and it is difficult to cut a flat surface. Too much material removal will leave deep tooling marks that can be the cause of adjustment problems with the support rollers during and after the machining process.
The belt grinder is more effective but may leave waves in the surface as it traverses the face of the tires and rollers. The resulting highs and lows on the tire and roller surfaces can create problems in making minimal support roller moves to control the axial thrust of the kiln.

A properly designed grinding machine with a cup grinding stone is designed to sense the highs and lows in the surface of the tires and rollers as it traverses the face. The machine has devices that sense the out-of round conditions on every tire. With this type of machine, an operator can machine a tire in a manner that eliminates timing marks, as well as the highs and lows in the surface, while reducing the chatter caused by inconsistent machining conditions.

It is important to realize how the resurfacing process complements the hot kiln alignment process. The hot kiln alignment will not have the best results with out alleviating the wear conditions on the tires and support rollers. Removal of the wear makes it possible to complete the alignment and reach optimum mechanical stability and efficiency of the kiln. With the two processes combined, the components will be relieved of accelerated wear and normal production of the kiln can be achieved with less energy.

Because of the energy savings generated by the resurfacing, payback for the alignment and resurfacing work can be only one year. Since all work can be performed during normal production, no costly downtime is needed and plant operation is uninterrupted. This resurfacing process is just one more way to increase the effectiveness of the kiln operation and also save maintenance dollars and energy costs for years to come.


back to tech papers